在各种条件下行走期间关节阻抗的知识与临床决策以及机器人步态培训师,腿部假体,腿矫形器和可穿戴外骨骼的发展相关。虽然步行过程中的脚踝阻抗已经通过实验评估,但尚未识别步行期间的膝盖和髋关节阻抗。在这里,我们开发并评估了下肢扰动器,以识别跑步机行走期间髋关节,膝关节和踝关节阻抗。下肢扰动器(Loper)由致动器组成,致动器通过杆连接到大腿。 Loper允许将力扰动施加到自由悬挂的腿上,同时站立在对侧腿上,带宽高达39Hz。在以最小的阻抗模式下行走时,Loper和大腿之间的相互作用力低(<5N),并且对行走图案的效果小于正常行走期间的对象内变异性。使用摆动腿动力学的非线性多体动力学模型,在摆动阶段在速度为0.5米/秒的速度的九个受试者期间估计臀部,膝关节和踝关节阻抗。所识别的模型能够预测实验反应,因为分别占髋部,膝关节和踝部的平均方差为99%,96%和77%。对受试者刚度的平均分别在34-66nm / rad,0-3.5nm / rad,0-3.5nm / rad和2.5-24nm / rad的三个时间点之间变化,分别用于臀部,膝部和踝关节。阻尼分别在1.9-4.6 nms / rad,0.02-0.14 nms / rad和0.2-2.4 nms / rad的0.02-0.14 nms / rad供应到0.2-2.4nms / rad。发达的洛普勒对不受干扰的行走模式具有可忽略的影响,并且允许在摆动阶段识别臀部,膝关节和踝关节阻抗。
translated by 谷歌翻译
ICECUBE是一种用于检测1 GEV和1 PEV之间大气和天体中微子的光学传感器的立方公斤阵列,该阵列已部署1.45 km至2.45 km的南极的冰盖表面以下1.45 km至2.45 km。来自ICE探测器的事件的分类和重建在ICeCube数据分析中起着核心作用。重建和分类事件是一个挑战,这是由于探测器的几何形状,不均匀的散射和冰中光的吸收,并且低于100 GEV的光,每个事件产生的信号光子数量相对较少。为了应对这一挑战,可以将ICECUBE事件表示为点云图形,并将图形神经网络(GNN)作为分类和重建方法。 GNN能够将中微子事件与宇宙射线背景区分开,对不同的中微子事件类型进行分类,并重建沉积的能量,方向和相互作用顶点。基于仿真,我们提供了1-100 GEV能量范围的比较与当前ICECUBE分析中使用的当前最新最大似然技术,包括已知系统不确定性的影响。对于中微子事件分类,与当前的IceCube方法相比,GNN以固定的假阳性速率(FPR)提高了信号效率的18%。另外,GNN在固定信号效率下将FPR的降低超过8(低于半百分比)。对于能源,方向和相互作用顶点的重建,与当前最大似然技术相比,分辨率平均提高了13%-20%。当在GPU上运行时,GNN能够以几乎是2.7 kHz的中位数ICECUBE触发速率的速率处理ICECUBE事件,这打开了在在线搜索瞬态事件中使用低能量中微子的可能性。
translated by 谷歌翻译
无人驾驶汽车(UAV)在许多领域都受雇于摄影,紧急,娱乐,国防,农业,林业,采矿和建筑。在过去的十年中,无人机技术在许多施工项目阶段中找到了应用程序,从现场映射,进度监控,建筑物检查,损坏评估和材料交付等等。尽管已经对无人机在各种施工相关的过程中的优势进行了广泛的研究,但关于提高任务能力和效率的无人机协作的研究仍然很少。本文提出了一种基于塔格狩猎游戏和粒子群优化(PSO)的多个无人机的新合作路径计划算法。首先,定义了每个无人机的成本函数,并包含多个目标和约束。然后,开发了无人机游戏框架,以将多功能路径计划制定到寻找回报优势均衡的问题。接下来,提出了基于PSO的算法来获得无人机的最佳路径。由三个无人机检查的大型建筑工地的仿真结果表明,在检查任务期间,提出的算法在为无人机形成的可行和高效飞行路径生成可行,高效的飞行路径上的有效性。
translated by 谷歌翻译
系列弹性执行器(SEA)具有固有的合规性,可为机器人提供安全的扭矩来源,这些源是与各种环境相互作用的机器人,包括人类。这些应用对海体扭矩控制器有很高的要求,扭矩响应以及与其环境的相互作用行为。为了区分现有技术的扭矩控制器,这项工作正在引入统一的理论和实验框架,其基于它们的扭矩传递行为,表观阻抗行为,特别是表观阻抗的钝化性,即它们的相互作用稳定性,也是如此作为对传感器噪声的敏感性。我们比较经典的海上控制方法,如级联PID控制器和全状态反馈控制器,使用干扰观察者,加速反馈和适应规则,具有先进的控制器。仿真和实验证明了稳定的相互作用,高带宽和低噪声水平之间的折衷。基于这些权衡,可以基于与各个环境的所需交互来设计和调整特定于应用程序特定控制器。
translated by 谷歌翻译
本文统一了设计,简化了风险厌恶汤普森采样算法的分析,为多武装爆炸问题的常规风险功能为$ \ rho $。在大偏差理论中使用收缩原理,我们证明了这些连续风险功能的新型浓度界限。与现有的作品相比,所界限取决于样本本身,我们的范围仅取决于样本的数量。这使我们能够以追求的分析挑战,并统一现有汤普森采样的算法的遗憾范围。我们展示了广泛的风险功能以及它们的“漂亮”功能满足连续性条件。使用我们新开发的分析工具包,我们分析了算法$ \ rho $ -mts(对于多项式发行版)和$ \ rho $ -npts(对于有界分布),并证明他们承认渐近最佳的风险厌恶算法的最佳遗憾平均方差,CVAR等普遍存在风险措施,以及一系列新综合的风险措施。数值模拟表明,我们的界限是相当严格的VIS-\“A-VIS算法无关的下限。
translated by 谷歌翻译
While the brain connectivity network can inform the understanding and diagnosis of developmental dyslexia, its cause-effect relationships have not yet enough been examined. Employing electroencephalography signals and band-limited white noise stimulus at 4.8 Hz (prosodic-syllabic frequency), we measure the phase Granger causalities among channels to identify differences between dyslexic learners and controls, thereby proposing a method to calculate directional connectivity. As causal relationships run in both directions, we explore three scenarios, namely channels' activity as sources, as sinks, and in total. Our proposed method can be used for both classification and exploratory analysis. In all scenarios, we find confirmation of the established right-lateralized Theta sampling network anomaly, in line with the temporal sampling framework's assumption of oscillatory differences in the Theta and Gamma bands. Further, we show that this anomaly primarily occurs in the causal relationships of channels acting as sinks, where it is significantly more pronounced than when only total activity is observed. In the sink scenario, our classifier obtains 0.84 and 0.88 accuracy and 0.87 and 0.93 AUC for the Theta and Gamma bands, respectively.
translated by 谷歌翻译
There are multiple scales of abstraction from which we can describe the same image, depending on whether we are focusing on fine-grained details or a more global attribute of the image. In brain mapping, learning to automatically parse images to build representations of both small-scale features (e.g., the presence of cells or blood vessels) and global properties of an image (e.g., which brain region the image comes from) is a crucial and open challenge. However, most existing datasets and benchmarks for neuroanatomy consider only a single downstream task at a time. To bridge this gap, we introduce a new dataset, annotations, and multiple downstream tasks that provide diverse ways to readout information about brain structure and architecture from the same image. Our multi-task neuroimaging benchmark (MTNeuro) is built on volumetric, micrometer-resolution X-ray microtomography images spanning a large thalamocortical section of mouse brain, encompassing multiple cortical and subcortical regions. We generated a number of different prediction challenges and evaluated several supervised and self-supervised models for brain-region prediction and pixel-level semantic segmentation of microstructures. Our experiments not only highlight the rich heterogeneity of this dataset, but also provide insights into how self-supervised approaches can be used to learn representations that capture multiple attributes of a single image and perform well on a variety of downstream tasks. Datasets, code, and pre-trained baseline models are provided at: https://mtneuro.github.io/ .
translated by 谷歌翻译
Neural compression offers a domain-agnostic approach to creating codecs for lossy or lossless compression via deep generative models. For sequence compression, however, most deep sequence models have costs that scale with the sequence length rather than the sequence complexity. In this work, we instead treat data sequences as observations from an underlying continuous-time process and learn how to efficiently discretize while retaining information about the full sequence. As a consequence of decoupling sequential information from its temporal discretization, our approach allows for greater compression rates and smaller computational complexity. Moreover, the continuous-time approach naturally allows us to decode at different time intervals. We empirically verify our approach on multiple domains involving compression of video and motion capture sequences, showing that our approaches can automatically achieve reductions in bit rates by learning how to discretize.
translated by 谷歌翻译
Efficient and robust control using spiking neural networks (SNNs) is still an open problem. Whilst behaviour of biological agents is produced through sparse and irregular spiking patterns, which provide both robust and efficient control, the activity patterns in most artificial spiking neural networks used for control are dense and regular -- resulting in potentially less efficient codes. Additionally, for most existing control solutions network training or optimization is necessary, even for fully identified systems, complicating their implementation in on-chip low-power solutions. The neuroscience theory of Spike Coding Networks (SCNs) offers a fully analytical solution for implementing dynamical systems in recurrent spiking neural networks -- while maintaining irregular, sparse, and robust spiking activity -- but it's not clear how to directly apply it to control problems. Here, we extend SCN theory by incorporating closed-form optimal estimation and control. The resulting networks work as a spiking equivalent of a linear-quadratic-Gaussian controller. We demonstrate robust spiking control of simulated spring-mass-damper and cart-pole systems, in the face of several perturbations, including input- and system-noise, system disturbances, and neural silencing. As our approach does not need learning or optimization, it offers opportunities for deploying fast and efficient task-specific on-chip spiking controllers with biologically realistic activity.
translated by 谷歌翻译
The ability to convert reciprocating, i.e., alternating, actuation into rotary motion using linkages is hindered fundamentally by their poor torque transmission capability around kinematic singularity configurations. Here, we harness the elastic potential energy of a linear spring attached to the coupler link of four-bar mechanisms to manipulate force transmission around the kinematic singularities. We developed a theoretical model to explore the parameter space for proper force transmission in slider-crank and rocker-crank four-bar kinematics. Finally, we verified the proposed model and methodology by building and testing a macro-scale prototype of a slider-crank mechanism. We expect this approach to enable the development of small-scale rotary engines and robotic devices with closed kinematic chains dealing with serial kinematic singularities, such as linkages and parallel manipulators.
translated by 谷歌翻译